On Sparse Matrix-Vector Multiplication with FPGA-Based System

نویسندگان

  • Hossam A. ElGindy
  • Yen-Liang Shue
چکیده

In this paper we report on our experimentation with the use of FPGA-based system to solve the irregular computation problem of evaluating when the matrix A is sparse. The main features of our matrix-vector multiplication algorithm are (i) an organization of the operations to suit the FPGA-based system ability in processing a stream of data, and (ii) the use of distributed arithmetic technique together with an efficient scheduling heuristic to exploit the inherent parallelism in the matrix-vector multiplication problem. The performance of our algorithm has been evaluated with an implementation on the Pamette FPGA-based system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High performance sparse matrix-vector multiplication on FPGA

This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on fieldprogrammable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capabl...

متن کامل

Sparse Matrix-Vector Multiplication on FPGAs

Floating-point Sparse Matrix-Vector Multiplication (SpMXV) is a key computational kernel in scientic and engineering applications. The poor data locality of sparse matrices signicantly reduces the performance of SpMXV on general-purpose processors, which rely heavily on the cache hierarchy to achieve high performance. The abundant hardware resources on current FPGAs provide new opportunities to...

متن کامل

An FPGA Drop-In Replacement for Universal Matrix-Vector Multiplication

We present the design and implementation of a universal, single-bitstream library for accelerating matrixvector multiplication using FPGAs. Our library handles multiple matrix encodings ranging from dense to multiple sparse formats. A key novelty in our approach is the introduction of a hardware-optimized sparse matrix representation called Compressed Variable-Length Bit Vector (CVBV), which re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002